The Minnesota P Index

Jim Klang, Dave Wall, and Chris Zadak
Minnesota Pollution Control Agency

Jeff St.Ores, Pete Cooper, and Robin Martinek
Natural Resource Conservation Service

Matt Drewitz and Mark Dittrich
Minnesota Department of Agriculture

- History and Development
- Overview of Index
History

- 1999. MN Animal Agriculture G.E.I.S.
 - Need for a P Index emerged.
- 2000-2002. MN P Index development
 - funded by MN EQB and COAFES, UMN.
- 2004-2007. Further validation, field testing, and educational effort as well as a user interface

Development Process

- Literature Review
 - P Index approaches in other states
 - Relevant Data for MN Index
- Characterization of P relationships for MN soils
- Draft Index based on MN data
- Validation, Testing, and Evaluation
- Development of User Interface
- Excel Version and User's Guide Currently available from web site
 - http://www.mnpi.umn.edu
- Windows based version released
Balance science with simplicity

Science
- Phosphorus transport is complex and variable from site to site
- Impacts to waters from phosphorus additions are complex and variable from site to site

Simplicity
- Understood by farmers and their advisors
- Reasonable level of input

Dave Wall, MPCA-P Index Training, 2005

Minnesota P Index

- **Transport mechanism**
 - RUSLE2 sediment delivery
 - Base runoff
 - Snowmelt runoff

- **Practice factors**
 - Manure factor
 - Runoff adjustment
 - Fall soil condition

- **P source**
 - Soil total P
 - Soluble soil P + applied P
 - Residue P + surface applied P

- **Risk**
 - Sediment-bound P risk
 - Soluble P, rainfall risk
 - Snowmelt risk

Overall risk of P loss
Required Inputs

- Location-County
- RUSLE2 sediment delivery to field edge
- Percent of field draining to depressions
- Distance to surface water
- Presence of BMPs/structures
- Soil Test P
- Soil type/hydrologic group
- Crop rotation/tillage
- P application timing (winter vs non winter)
- P application rate (fertilizer and/or manure)
- P application method

Overall P Index Risk Levels

<table>
<thead>
<tr>
<th>P Index Score</th>
<th>Relative Risk</th>
<th>Management Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Very Low</td>
<td>None</td>
</tr>
<tr>
<td>1 - 2</td>
<td>Low</td>
<td>Minor Improvements</td>
</tr>
<tr>
<td>2 - 4</td>
<td>Medium</td>
<td>Small Improvements</td>
</tr>
<tr>
<td>4 - 6</td>
<td>High</td>
<td>Moderate Improvements</td>
</tr>
<tr>
<td>> 6</td>
<td>Very High</td>
<td>Large Improvements</td>
</tr>
</tbody>
</table>
La Sueur Co. Surface Inlet 6
Storm Event July 4th 1998

SNOWMELT 1998
SNOW COVER 1997

FREEZING PAINS!
Tillage, Manure, and Season Interaction on Soluble and Particulate Annual P Losses

Tillage and Manure Effects on Soluble and Particulate Annual P Losses
Management Suggestions

- Reduce rate of erosion through conservation tillage
- Reduce sediment delivery through use of buffer strips
- Incorporate or inject P rather than surface apply
- Avoid winter applications of manure unless rough surface
- Base rate of P application on soil test and fully credit manure applications
- Prevent excessive build-up of soil P

Overview Summary

- Sensitive to Erosion/Erosion Control
- Encourages incorporation or injection of P
- Sensitive to application rate
- P Index score responsive to management changes